The system $KNbO_3 + BaTiO_3$

E. Irle and R. Blachnik

Anorganische Chemie, Universität Osnabrück, Barbarastr. 7, D-4500 Osnabrück (Germany) (Received 10 December 1990)

BaTiO₃ and KNbO₃ are ferroelectric materials which crystallise in the perovskite structure. Furthermore, both show the same sequence of phase transitions with increased temperature, i.e. $R3m \rightarrow Bmm2 \rightarrow P4mm \rightarrow Pm3m$. The temperatures corresponding to these transitions on heating are: $T_1 = 263$ K, $T_2 = 498$ K and $T_3 = 708$ K for KNbO₃ [1]; and $T_1 = 193$ K, $T_2 = 278$ K and $T_3 = 393$ K for BaTiO₃ [2]. All transitions are of first-order, as revealed by their pronounced thermal hysteresis. The first systematic investigation of the BaTiO₃-KNbO₃, they observed a continuous series of solid solutions with cubic symmetry. Their interpretation of the data seems to be inconsistent. We reinvestigated this system in the course of our studies on Nb₂O₅-based phase diagrams.

The experimental equipment and the method used have already been described [4]. The starting materials for the preparation of the samples were K_2CO_3 , BaCO₃, TiO₂ and Nb₂O₅, all at least 99.9% purity. The required amounts of the powdered materials were mixed and equilibrated at 873 and 1273 K for 14 days in platinum crucibles. Samples of each preparation were characterised by DTA and X-ray powder diffractometry.

The phase diagram of the BaTiO₃-KNbO₃ system, which was constructed from the data obtained is shown in Fig. 1. KNbO₃ decomposes in a peritectic reaction; therefore the system is not quasi-binary. However, below the decomposition temperature of KNbO₃ only two phases were found. The first of these was KNbO₃ with orthorhombic symmetry and lattice parameters a = 569.7 (1), b = 397.8 (1) and c = 572.0 (1) pm, in good agreement with the data of Katz and Megaw [5] (a = 569.74, b = 397.1 and c = 572.23pm). No solid solutions were observed in the KNbO₃-rich part of the system. The transition temperatures T_2 and T_3 were lowered sharply by addition of less than 1 mole.% BaTiO₃ and, on further addition of BaTiO₃, remain at constant temperatures of $T_2 = 450$ K and $T_3 = 638$ K. The second phase was a solid solution, based on BaTiO₃. At 1273 K, it has a homogeneity region which extends up to 33 mol.% KNbO₃. At elevated temperatures this solid solution undergoes a phase transformation from the tetragonal to the cubic

Fig. 1. The phase diagram of the $BaTiO_3 - KNbO_3$ system: •, DTA; •, dilatometry. (The system is constructed as a quasi-binary system. The deviations in the liquidi at its $KNbO_3$ side, due to the incongruent melting of $KNbO_3$, are neglected.)

Fig. 2. Cell volumes of BaTiO₃-based solid solutions in the BaTiO₃-KNbO₃ system.

TABLE 1

Composition (mol.% BaTiO ₃)	a (pm)	с (рт)	
100 (tetrag.)	399.57 (4)	400.30 (8)	
	398.9 *	402.9	
96	400.9 (2)	402.2 (6)	
92	401.0 (3)	402.3 (6)	
88	401.2 (2)	402.5 (5)	
84	401.5 (4)		
82	401.2 (1)		
76	401.3 (1)		
72	401.18 (7)		
68	401.05 (3)		
60	401.04 (3)		
BaTiO ₃ (cub.)	403.1 ^b		

Lattice parameters of BaTiO₃-KNbO₃ solid solutions

^a Ref. 6. ^b Ref. 7.

form of perovskite. The transformation temperatures decrease with increasing content of $KNbO_3$. The lattice constants and the volumes of the elementary cell of $BaTiO_3$ -based solid solutions are given in Table 1. Solid solutions with tetragonal symmetry were observed between 0 and 12 mol.% $KNbO_3$. The volume of their elementary cells increased on addition of $KNbO_3$. In the solid solutions between 14 and 33 mol.% $KNbO_3$, a decrease in the volume of the cubic elementary cell was observed (Fig. 2).

ACKNOWLEDGEMENT

We wish to thank the DFG (SFB 225) for financial support.

REFERENCES

- 1 B.T. Matthias and J.P. Remeika, Phys. Rev., 82 (1951) 727.
- 2 A.V. Hippel, Rev. Mod. Phys., 22 (1950) 221.
- 3 R.J. Bratton and T.Y. Tien, J. Am. Ceram. Soc., 50 (1967) 90.
- 4 R. Blachnik and E. Irle, J. Therm. Anal., 35 (1989) 609.
- 5 L. Katz and H.D. Megaw, Acta Crystallogr., 22 (1967) 639.
- 6 E. Raub and W. Mahler, Z. Metallkd., 46 (1955) 282.
- 7 S. Naka, Bull. Chem. Soc. Jpn., 47 (1974) 1168.